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ABSTRACT

k
Suppose r is a heteroclinic orbit of a C functional differential

equation x(t) f(x )with az-limit set Oil') and &-limit set w(l')
t

being either hyperbolic equilibrium points or periodic orbits. Necessary

and sufficient conditions are given for the existence of an f close to

f in C kwith the proF erty that x(t) f f(x )has a heteroclinic
t

orbit l'close to r'. The orbits r are obtained from the zeros of

a finite number of bifurcation functions G(B,i) E P E iRd~

A5 '-

Transversality of r is characterized by the nondegeneracy of the

derivative D G. It is also shown that the f which have heteroclinic

k
orbits near r are on a C submanifold of finite codimension =max{'O,

-ind I) or on the closure of it where nd r is the index of r.

a~s~c ,- .--

C
k

. . ..-- - - - - - - -
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Reproduced fromM1s availale copy.

§1. Introduction.

Let C[-r,O] be the Banach space of continuous functions from

[-r,O] into R with the supremum norm. Suppose x is any continuous

function fron R into R x ( ) = x(t+:j, -r < e < 0 is an element -,

k
in CL-r,0]. Let D be a bounded open ball in C[-r,0], and let X

k. k
{f f E c f: D Rnl be the Banach space with the usual C -norm , - -.

' k  For a given f x k, suppose the autonomous retarded functional -.-

differential equa. -on

(1.1);(t) =f(xt

has a heteroclinic orbit r C Cf-r,0] with a-limit set ct(r) and

w-limit set w(r) being hyperbolic periodic orbits or equilibrium

points, r U w(r) u a(r) C D.

Suppose X is a Banach space, the parameter space, g E C (D X,

*R n) with g(',i) E yk , I lg(',)I k = 0(i) as i j 0 and consider
k

the perturbation of (1.1) given by

(1.2) x(t) = f(x + g(xt)

,, The purpose of this paper is to determine conditions for the

occurrence of a heteroclinic orbit 1- of (1.2) 'in a neighborhood

of r for 1. in a neighborhood of zero. -Wo also want to specify

these conditions in terms of computable quantities which can be used

to determine either the transversality or the order of nontransversality

of the heteroclinic orbit. '7.-" ' "
Ss

In order to be specific about the results, let us assume first -. '-

* .'..- . --.

I.-... . . ... -.... .......... ,................ ,...... ..... ...
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that ail') -yip 1' 41) 'Y where y1, 'y2  are periodic orbits of periods

Wit2W respectively. Let W (Y.) W (Y. be, respectively, the unstable

and stable sets for y., j = 1,2. We refer to these as manifolds, even

though it may not always be true that they are manifolds globally. The

local unstable and stable manifolds W u (Y ) (-Y) near *Y. are-
loc j loc jj

k
C -manifolds.

k_
Let T(t): CE-r,O) - C[-r,O], t > 0, be the C -semigroup generated

by (1.1); that is, T(t),' is the solution through at t =0. In

the following, we let F' = qj Y' = Ut Pptl -2 = UJ{P~t

where q, p, p2 are solutions of (1.1).

Definition 1.1. r' Wu(,) nl wy) is said to be a transverse hetero-

clinic orbit if for s,t > 0 large enough such that q E Wu (a (r)
-s c

and qtE w C' (F)) then T(t-s) sends a disc in W lo (amF) containing

q transverse to W ((.(7)) at q

The important concept of generAl position will play an important

role in the study of nontransversality.

U 5
Definition 1.2. w" ()l n w is said to be in general position if

ris either transverse or, if, for any s,t > 0 large enough such

that q Wu W (yl) and qtE W1  y2  then T(t-s) sends a disc

bc 1 o -s c-y)

is the only tangent vector in [i'ts/ 1  (Y1 / nl Ws 2Y a

Definition 1. 3. The index of r a w (y) nl w (y) is ind r=

1 21

S. ..
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Similar results hold when a(r), w(F) contain equilibria if we

define the index of F as ind F dim Wu  (c(F)) dim W (u F))
loc boc

+ a where 8 = -1 if w(F) is a point and 0=0 if w(r) is a

periodic orbit.

The proof of the above result uses the method of Liapunov-Schmidt
d* md+l"" -

to determine a set of bifurcation functions G(B,p) E jd E 3 Rd 1

such that there is an heteroclinic orbit F if and only if there is

a 8(L,) such that GCB(w),I( ) = . Furthermore, the transversality of

is equivalent to saying that D G is onto. The degree of nontrans-

versality of F is measured by the rank of D G.

The manner in which the method of Liapunov-Schmidt is employed

follows in the spirit of the investigations of Chow, Hale and Mallet-

Paret [1], Palmer E11i and Lin [7] for the determination of heteroclinic

orbits for periodically perturbed autonomous systems. The case where

the orbits y. are periodic and the perturbation is autonomous intro-

duces additional technical difficulties. First, the linear variational

equation -

(1.3) x(t) = f (q )x
4 t

around F has the bounded solution ;(t) which does not approach

zero as either t - ±_. This implies that (1.3) does not have an

expnential dichotomy. Second, since the period of YU9 changes with

u and the time that it takes to go from a transversal of to a

transversal of y2' is also changing with 1 , these quantities must
2

be determined in some way. This involves several careful time scalings.

" ' ' *" " " " ' " . . . . . . '" '." .-. - -" % -.- . - . -. "*. " * . * . - .- .. - ... . " .- . "' .. i . . ." . " , " .' i''. . '."
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If ind r= -1, the concept of general position has been referred

to as quasitransversal in the study of diffeomorphisms (see Sotomayor

[12] , Newhouse and Palis [10)).

For Vi small, there is a family of hyperbolic periodic orbits
7 0 with s u k

t wcih Wl ), WlCy.) being C in
j E jR t jo boc j

v (see [3)).

One of the main results of the paper is the following.

Theorem. If r C w (Y ) n ws(2, I = max{0,-ind F) then, for -

k ksmall, there are C submanifolds M(I) C X of codimension I such

that f + g(',E) C M(I) if and only if (1.2) has an orbit F C W (y

n wS(,Y') close to . and in general position. Furthermore, f E CQN(I); . .

2
that is, if r is not in general position, then there is a perturbation.

g of f such that f + g E M(I).

In particular, this result implies that there are I linearly

independent perturbations to break the heteroclinic orbit F if I > 0;

that is, ind-F< 0. This result is a local version of the genericity of

transversal intersection of stable and unstable manifolds of y and

Y2" If indF> 0, a small perturbation can make it transverse; if

ind T< 0, a small perturbation can break it and there are -ind F ways

to do it. For a more complete discussion of generic properties of func-

tional differential equations, see [6], [81, [91.

dim&." -
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We now give a brief outline of the contents of each section.

Section 2 is a recollection of known results on stable and unstable

manifold theory. Section 3 is devoted to the development of the

theory of expnential trichotomies, generalizing the concept of ex-

ponential dichotomies to fit our needs. Section 4 is devoted to more Z

details about exponential trichotomies including the roughness theorem.

Also, it is shown that the linear variational operator around r defines

a Fredholm operator in the Banach space of continuous bounded functions

Yt -Yt
in IR weighted by a factor e for t < 0 and e for t > 0.

In Section 5, we derive the bifurcation functions G and deduce various

geometric consequences of them. In Section 6, we construct perturbatios

g(',i), showing the manifold structure of M(I), and that CkM(I) con-

tains all the vector fields having T near r as a heteroclinic orbit.

The authors acknowledge useful conservations with John Mallet-Paret

in the preparation of the paper.

___ * _,__
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92. Hyperbolic equilibria, periodic orbits.

I . - ---

Suppose (1.1) has an equilibrium point x0 E n and let x E C

be defined by x0 (e) = x0, -r < 6 < 0. The linear variational equation

.. 0

about x• is

(2.1) x(t) = L(x0)xt , L(x0 ) = D f(x
0 0

The solution x0  of (1.1) is hyperbolic if all eigenvalues of the

characteristic equation of (2.1) have nonzero real parts. Let

W (x 0 ) { ;C: T(t)4x as t

0 0

Iu
UJ

W (xo) {0 E C: T(t)+ is defined for t < 0,

T(t): x as t
0

T,c following theorem may be found in [3, p. 2301.

Theorem 2.1. If f E (cJPn ) C k > 1, and x0 is a hyperbolic equili-

brium point of (1.1), then there is a neighborhood U of x 0 such that

Ws  (x) (Ws  n u, w () =x W(x) n U
loc 0 0 loc 0 0

are C -manifolds. The approach of solutions to x0 as t -+

(or t .- m) is exponential.

Suppose p(t) is a periodic solution of (1.1) of minimal period

and let Y U ctpt I C be the corresponding periodic orbit.

k n
Then necessarily p E C OR, IRn ) and Pt ' 0 for all t E R. The

linear variational equation about the periodic solution p is

.~~~. ....•
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(2.2) x(t) =L (t) x
P t

(2.3) L (t) D f(p)
p

and p (t) is a solution of (2.2).

Let T(t,s) : C *+C be the solution operator for (2.2); that is,

T(t,s)"' is the solution of (2.2) which coincides with at t =s.

*The characteristic multipliers of (2.2) are the eigenvlaues of the

operator T(,:,O) . The fact that pt # 0 for all t E IR satisfies

(2.2) implies that 1 is a multiplier of (2.2). The orbit Yis

I said to be hyperbolic if

(i) 1 is a simple multiplier

(ii) [O (T u0,) Y:l,] n {z E I:ZI l

S u
The stable set W (-y) for 'Y and the unstable set W MY of

are, defined as

W(y) {cE C: i(t) - y as t -

u
W Cyj) = zE C: T(t) is defined for t < 0

andy ast

For any a > 0, define

W ya s (- t Ws(-y): i(t), p t +a 0 as t

u h a) E Wu (y): (t)~ p t~ -0 as t
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S U
The sets W Cy,x) , W (y,a) are points respectively on the stable

* and unstable sets which are synchronized in time withp

For any neighborhood U of y, we define

W5  h ac) E {~ w (s .: ~ E U, t > 0)boc

W u (y,ca) = ~E wu (-y,ca): ~ E U, t < 01.
loc

The following theorem may be found in [3, p. 242], [4).

Theorem 2.2. If f E c k(CJ]Rn), k > 1 and 'y is a hyperbolic periodic

orbit of (1.1), then there is a neighborhood U of y such that

s u ) r k_______
W lc a)Wbc o __ -r manifolds and

( Y) = JW 5  (Y'a) , W~ (Y) = U Wu (yCO)
loc boc lc loc

k_are C -manifolds. The approach of solutions to y either as t -

(or t -*-) is exponential.

L



LT

5 3. Exponential trichotomnies.

For t > s in some interval J, let T(t,s) be a strongly continuous

nonautonanous semigroup of linear bounded operators in a Banach space X,

that is, T(t,s) is strongly continuous in t,s, T~s,s) = 1, the identity,

T~t.,T)T( ,s) =T(t,s), t > T 5 s. It is said that T(t,s) has an exponential

trichotomy on J if there exist projections P (t) , P (t) and P (t) =I
u s c

-P (t) -P (t), t E J, strongly continuous in t, and
u s

T(t,s)P (s) =P (t)T(t,s) ,
s 5

T(t,s)P (s) =P (t)T(t,s)
u u

T(t,s)P (s) =P (t)T~t,s),
C

for t > s in J. We also assume that T(t,s) :-P C s) -q~P u(t) and

T(t,s):_cP (S) -_C~p (t), t > s in J are isomophisms and T(s,t)

-(T(t,s)) ,t > s is defined from .QP (t) onto *QP Cs) and from
u u

.q? (t) onto MP (s). Furthermore, there exist constants a < %\-E < +E
c c

Sand K > 0 such thatA

ci Ct-s)I T(t,s)P Cs)J < Ke

T(t,s)P C t) I < KeS~S

ITt~) (cc (t-s)K

(-x'+E) t-s)

We shall assume that gPP t) and _LP (t) are finite dimensional.

.........................................................



. .. . . . . . . . . ..- , - .

-10-

The adjoint operator T*(s,t) of T(t,s) is a weak* continuous

semigroup in X*. If T(t,s) has an exponential trichotomy on J, then

T*(s,t) has an exponential trichotomy on J with projections P *(t),

P *(t) and P *(t), weak* continuous with respect to t E J, where *
s c

dentoes the adjoint of a continuous operator. Obviously, dim MP *(t)
u

= dim_&P (t) and dim _P *(t) = dim MP (t). It is also true that
u c c

T*(s,t): . P *(t) R P* (s) and T*(s,t) : _QP *(t) -/P *(s) are
u u c c

isomorphisms and the inverses T*(t,s) = (T*(s,t)) (T(s,t))* are

properly defined. See [6].

We call qP (t), _P (t) and P c(t) the unstable space,
u s c

stable space and center space, since in most applications, B > 0, . = 0

and U < 0. The case of P (t) E 0, t E J is also called a shifted
c

exponential dichotomy if the splitting is not made at v = 0.

If (1.1) has a hyperbolic equilibrium point, then the solution

map T(t,s) = D T(t-s)x0  of (2.1) has an exponential dichotomy for

all t > s in 3. This is a special case of an exponential trichotomy

with the dimension of the center space equal to zero and a < 0 <

For a proof, see (3, p. 181).

If (1.1) has a hyperbolic periodic orbit = U {pt}, then thetEFR t

solution map T(t,s) = D T(t-s)ps of (2.2) has an exponential trichotomy

for all t > s in 3. This is a consequence of the decomposition theory

of linear periodic systems in [3,Ch.8]. In terms of the notation in

[3, p. 203), the decomposition according to the multipliers with moduli

greater than one yields projections Pu and P s+ P With c > 0

sufficiently small, the decomposition according to the multipliers with

.
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moduli greater than 1-c yields projections P + P and P The
U C S

adjoint system of (2.2) is then used to obtain the projections Put

The proof of the following lemmas, 1, 2 and 3 will not be given

here, since they are similar to the case of exponential dichotomies of

flows generated by ordinary differential equations. See [2]. The

technical treatment of the additional difficulty caused by the nonin-

vertibility of T(t,s) can be found in [7].

Lemma 3.1. Let T(t,s), t > s have exponential trichotomies in R
+ ± ±.+-

and R ,with projections Pu(t), Ps(t), Pc(t), t E R-. Suppose
U 5 C

that the exponents in R- and R+  are the same, and the unstable

spaces in R and R+ , center spaces in R and R have the same

dimensions, MP-(o) n {IP +(0) p+(0)} = 0, and {P (0) ""
u c s u

pP-(0)} nlp(0) = 0. Then T(t,s) has an exponential trichotomy
C 5

in R= R U R

Lemma 3.2. Let T(t,s) be defined in (-m,tO ] and have an exponential
0

trichotomy in (-c,'] , t > 'T. Suppose that T(t0,t) ( + 9 ) 0 for
00 1 2

1 Y Pu E pc(1) and - + 2 0. Then T(t,s) has an

exponential trichotomy in (--,t 0  with the same exponents, and the

projections P (t), P (t) and P (t) approach P (t), P (t) and
u 5 C u s

P (t) exponentially as t -.
c

Lemma 3.3. Let T(t,s) be defined in [t0,+-) and have an exponential

trichotomy in [t,+-), T > to. Suppose that T*(t 0 ,r)(-, 2) 0 for

E M P*(T), 2 E gP*(T) And 0. Then T(t,s) has an exponentialu 2 " 1'2
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trichotomy in Etof+w) with the same exponents, and the projections

P (t), P (t) and P c(t) approach P u(t) , P C t) and P c(t) exponen-

tially as t - ~
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4. The linear variational operator.

In this section, we give more details about exponential trichotonies

for the linear variational operator for a heteroclinic orbit r of (1.1).

Let 21 be the Banach space of all the linear continuous functions

L: C([-r,O],R) - Rn with the operator norm. Let C k(R, 1) be the

k kspace of C maps from R to I with the C uniform topology.

Let T(t,s) be the solution operator for the linear functional differ-

ential equation

(4.1) x(t) = L(t)Xt

with L(.) £ ck(R,1). Let L(t) = di (t ,)6) for t E C[-r,0].
f-r

For each t, n(t,e) is an n × n matrix function normalized so that

I(t,;) = 0 for S> 0, )(t,-) = n(t,-r) for e - -r, continuous from

the left in e on (-r,0) for each t and has bounded variation on

E t-r,0] for each t. Such matrices constitute a Banach space
n

with jnc(t,')Hj = max [ Var Di(t.)] Each L(.) E ck(R,I) is
l<i<n j=l k

associated with a unique n(',') E C (R,-4 )- and the relation is an

isomorphism from ck (R,2) to ck (R, ).

0
The formal adjoint equation for (4.1) is

(4.2) y(s) + y(a) (as-i)d = const., s < t-r.

n* n*
B0 ([-r,0],R ) be the space of functions frcn [-r,0] to R which

have bounded 'ariation on [-r,0] and are continuous from the left with

= max %=l Var p.. The solution operator of (4.2) defines a semigroup
n* n*

T(s,t), s < t, mapping yt E B 0([-r,O],R ) to y E Bn (-r,0],R ). See [3).

From (4.2), it is clear that y(s) is absolutely continuous for s < t-r.

kIf n E c (Rq , k > 1, we have that

........... *..-..

-.;.....,...................... ..-~~~~~...... .. .. ,, .. . ...... ,........... ... ,............ :::-
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+ Y y(a) rt (a,s-cx)d + ya~) n(a, s-a) d a 0, s< t-2r

So ()is absolutely continuous for s < t-2r. Therefore y(s) EC

for s < t - Ck+l)r, by induction.

Consider equation (4.1) in some interval J c R. For any L(.)

E c(,7 21) , let A(t,L) =n(t,-r ) n(t,-r) be the jump of ri(t, ) at

_r. The function L(-) is said to satisfy the H-0 property if for any

compact set K c J, there exists an c, 0 < c < r, such that

I r~Ct& i Aft)4C-r), t, E K,

and the set {tldetA~t) =0, t E J) contains only isolated points.

Lemma 4.1. (Hale and Oliva [5)) The solution operator of (4.1) is

one-to-one if L satisfies the H-O preperty. Furthermore, the class of

satisfying the H-0 property is dense in C (J,1) if J is compact and k > 1.

Lemma 4.-2.- Suppose that L satisf ies the H-0 property in J. Then the so-

lution operator T(s,t), s < t, for the formal adjoint equation (4.2) is

one-to-one for all s < t for which [s-r,t] c J.

Proof. Suppose that y(cz) is a solution of (4.Z and there exists a

constant t, [t-r,tl C J, such that y(a) =0 for a < t. We want to

show that there exists p > 0 such that y(ca) = 0 for a~ < t +p.

Let c 5 0 be the constant in defining the H-0 property. For

St+c-r Y(s) satisfies the following equation

y(s) + y~~nas =~~ constant.

f-1

7: . . . . . . . . . . . . .
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Since y~s) Q for s t

y 0(,sa a constant, ..

.. t*

(4.3)

s < +-

Let S= t+E.- r in (4. 3). Since t < a < t+c, ~r< s-ti< E- r, we know,

by H1-0, n(ci,s-i) fl(c,E-r) for t < a~ < t+C, therefore

constant ft+E( )

PL t

If t-r < s < t+E-r in (4.3), we have

t~ s+r

But, for t < ct < s+ r, Tj(a,,s-cx) =j n(a ,E-r) , and so

y~a) n~t - Ti(c,F-r)ldz 0, t-r < s < t+c-r
s+r

Differentiating with respect to s, we have y(s+r)4k(s+r) =0 for

t < s+r < t+c. There exists 0 < p < such that i(s+r) is non-

singular for t < s+r < t+p. Thus y(s+r) =0 for t < s+r < t+ p.

This proves the lemma.

If we suppose that T(t,s) has an exponential trichotomy in J,

then so does T*(z,t), s < t. If 3 =(4,.)or [0,+-), the

relation between the true adjoint operator and the formnal adjoint
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operator (see [3, p. 152ff]) implies tiiat Ts,t) also has an exponential

trichotomy in J, with the same exponents a < v-c < v+c < 3.

Lemma 4.3. Suppose that (4.1) has an exponential trichotomy in

J = (--,0] or 10,+-) or (--,+-) with projections P (t), P (t)

and P (t), and exponents a < v-c < V+E < $. Assume that 6 =
c

sup!IB(t)tI, where B(°) E ck(Jl). Then the functional differential
tEJ
equation

(4.4) x(t)= L(t) t + B(t)xt t

.- ..

has an exponential tri'chotomy in J, with projections P (t) P (t) and
U , s

c (t), and exponents a < V-C < v+C < B, provided that 161 < 60 for

some constant 60 > 0. Furthermore, P u(t) Pu (t), Ps (t) Ps(t)

. _and P (t) - P (t) uniformly in t and , - c,v,cE as 6 - 0.
c c

Under the same hypotheses on (4.1) and J = (- , 01 (or 10,-))

and I B(t)I - 0 as t- -- (or t- :), there is a T > 0 such that

(4.4) has an exponential trichotomy on (--,T) (or [T,-)) and P (t)
u

P (t) - 0, Ps(t) -P (t) - 0, P (t) -P (t) 0 as t- -- (or tus s c c -

Proof. We observe that, if (4.1) has an exponential dichotomy in J = (-w,0-

or (0,+.) with projections P (t) and P (t), exponents a < , and if

U

6 is small, then (4.4) has an exponential dichotomy in J with projections

P (t) and P (t) and exponents . < . Furthermore Pu(t) - P (t),
U 5 U U

Ps(t) - Ps(t) uniformly in t E J and ;,B - a,$ as 6 - 0. The

proof of these facts is similar to the roughness of exponential dichoto-

mies in the ordinai-y differential equation case, and canbE found in [23,

- . . .-. ...
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although necessary changes have to be made to avoid using the inverse

of the solution map too arbitrarily - it is only defined on the unstable

spaces and center spaces.

Now from the exponential trichotomy of (4.1), two exponential

dichotomies can be defined. One is defined by Pl = P + P p = P
U u s s

2
and with the exponents a < V-E. Another is defined by P= Pu

u U
2P= P + P with exponents v+c < 6. From our previous observation,
s c S

for small 5, (4.4) has two exponential dichotomies. One is defined by

i, -is  - -<2 -2
Pup P' with exponents a < v-c. Another is defined by Pu, P with
u s u s

exponents ,+c < 8. Also, Pi ,P are close to Pu ,Pi and o, 8, v,c '
U 5S

are close to a,E, ,E if 6 is small. There are three cases to be

considered.

1) J i0,-1. In this case, are uniquely determined

and *"I . difference of their codimension is equal to dimR c . ;
s s c

We see that V (t) = 5 (t) , P (t) = p (t) and P C(t) equals the operation

of P (t) follow- . h,. a rrojectlon from MP (t) onto the invariant
5 5

-1 -2
subzpaces complerentary to qp (t) in _P (t).

S ,

2. -
2) J = (- ?]. In this case, P and P are uniquely determined

and P2 C P. The difference of their dimension is equhl to dimQP
u u c

We see that P (t) = p2(t), P (t) = P (t) and P (t) equals the operation
u U s s c

-1 --of P followed by a projection from P (t) onto the invaraint subspaceu u.

21
complementary to MP 2(t) in 9P (t).u u

3) J (-co). We use 1) and 2) and Lemena 3.1. Notice that

(o) no' (0 () _C6 (0)1 andu c "

, (O) fPl (o s (0) an

U c °
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for small 6, since thesE two equalities are rough under small per-

turbations. To show this, one needs that dim-P and dim6P
U C

are finite.

The proof of the last part of the lemma follows as in the ordinary

differential eauations case (see, for example, Palmer il, An immCdiate

consequence of Lemma 4.3 is the following.

Theorem 4.4. Let r = {qt} be a heteroclinic orbit with x(r) and

<(-) hyperbolic equilibria or periodic orbits. If T(t,s) , t > s, is

the solution mar for x(t] f'(qt)xt, then T(t,s) has exponential

trichotomies in (-w,-T] and [-t,+-), T > 0. The orbit r is trans-

verse if and only if

T(,,--).Pu(-:) -+ (PcP (T) RP X " X

or, equivalently,

T(T,-) CqP (-) _qP (-T)) + qPs(T) = X.
U

* is in general position if and only if F is transverse or

CqPu(-r) E -Pc (-r)} P [T(T,-i)]-1 Ps(T) ={0}.

When applying Theorem 4.4 to the special case that r is a homoclinic

orbit and a(r) = w(r) is a hyperbolic periodic orbit, we have that

is transverze if and only if T(t,s) has an exponential trichotomy

in R. This can be seen from Lemmas 3.1, 3.2 and 3.3.

. . - .. .



-19-

0
Let y and ' be two real constants. Let C0(51,7) be the

12 1, 2

Banach space of all the continuous functions x(t) defined from R
n2 '. it, 2':

into Rn such that jx(t)j < Ke'1t, t < 0 and ix(t)l < Ke t > 0

for some constant K > 0. The norm in C (yIy 2) is defined as

-Y2t y1t }  -..

IXII - sup {Ix(t)Ie ', x(-t)je .

C (yiy 2) t>0

Let C k(. ,y 2) be the Banach space of all the Ck  functions x(t)

(i) 0
such that x (t) E c ( 1 , 2), i 0,1,...,k, with the norm

k

IlxH k = lx) --

C (Y1 , 2 ) i= C (y Y 2)

For L(-) E 0k (R,%), k > 0, the linear operator FL C k+2 ~l'2 -

k dx (t)
C (y Y)2 is defined as F L ' h, h(t) = -t L(t)x ., We

k
wrt 1,'Y2  to indicate the space C (y l 9 under consideration.

Lemma 4.5S. Suppose that L(-) E C kR,%I) and that (4.1) has shifted

dichotomies in R and R with exponents a1< l 02 2

zespectively. Let a1 < Y,< and DI< Then FL

1 2'< -'< a2-

k+l k
C (YiY) C (yiY 2 is Fredholm of index ICF L with

I (F i dimcat (0) damce p (0)
L u u

Lemma .5 (uTos (ht, 0)() E RkPR, ) n tha () t a shifte

L u s
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-qF = h: h C (kCY FY) I J (t) h(t) 0

for all the solutions of the formal adjoint

equation y(t) such that

y(t)! < Ke 2 > >0; l(t)1 < Ke t < 0.

-Proof. Let u~t) =e -*tx and g(t) e= eY h(t), where y Y for

t < 0 and y= 2 for t > 0, respectively. The function u: RP- C[-r,0]

does not satisfy any delay equation, but, from the variation of constraints

formula (see [3]))
L t

(4.5) x = ~~~ + fsT(t,v)X 0h(v)dv, s < t

we nave

i
(4.6) u~t) =T (t,s)u~s) + ~fT (t,v)X g(v)dv, s < t

where T Y(t,s) Ttse ts)and y y1or -Y2dependinq on

s < t < 0 or 0 < s < t, and X Ce) =0 for e < 0, X (0) 1 , the
__0 0_ _

identity. The operator T Y(t,s) has the usual exponential dichotomies

on R- and R+with projections P Wt = P tW and P At) =P (t).

Discussion of the usual exponential dichotomy case can be found in

7 1,where we proved that the bounded solutions for (4.6), whcr c C,

are

{uu(t) = T (t,0) 0 (0) E MR (o) nl -qP (0) }
Y uY sy
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Also, the set of the bounded functions g(t) such that (4.6) admits

a bounded solution u(t) is

{g(t) bounded: J(t)g(t) = 0,

E(t)= <T*(t,0) ,X >, E-VP(0) fl4P-(0)}.
0 U" s"Y

. -Y .-s

Returning to (4.5) and observing that T*(s,t) = T*(s,t)e-  
, one

easily obtains the desired results in the lemma.

Lemma 4.6. Assume all of the hypotheses of Lemma 4.5 except that the
IL

shifted dichotomies are valid only in (- ,- ] and [T,+-), 7 > 0.

Then all the results in Lemma 4.5 are valid except that

(4.7) I (FL) = dimP(-:) - dimMP(T), -.

.A'(FL ) = . (T(t,O) ) (0) : t E R, ¢ E qPu(-T)
L u

and T(,-T)C E jP+
s

Proof. We first assume that there is a function A E C k (R,,) with

compact support in (-T-It+I) and x(t) = (L(t) + A(t))x t has shifted

exponential dichotomies in R and R . The existence of such an A

shall be discussed later. It is clear that z(y) (t) = A(t)y t  is a compact

k+1 k
operator as a map from C (Y 1 y 2 ) to Ck(y 1 , 2 ). From Lemna 4.5,1, .2 1.2

F is Fredholm. From the perturbation theorem of Fredholm operators,

L-. ".

. '. .-. .
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F, is Fredholm and indr indF .This proves 4.7.
L L+A'

The characterization of 4'(F ) is obvious. Let y(t) be a

2
solution of the formal adjoint equation for (4.1), and yt) < Ke

.-a t
t > 0, jy(t)j <1 Ke ,t < 0. Such solutions {Y(-)} form a finite

dimensional linear space y. If h E *RFL, then =~~ht 0 for

all y E TY. Therefore, ' F C {h: fy~t)h(t)dt 0, for all y E 'T'.

One can show that dim-.A4t dim'YV dim ;P (-T) - dinrt4PP (T) . The
L u u

proof is omitted since it is similar to standard arguments relatina

an operator to its adjoint (see 16)). Now, from the definition

IndF dirr4' - codiir-(F ,we have dim T codim proving the
L L LL

characterization for .RF
L

It remains to show the existence of A: R -~2.First, we assume

kthat k > 1. By Lemma 4.1 and 4.2, we can find B E c (R '', suf-
2

ficiently small and with compact support in 1--! T 1), such that

x(t) =(L~t) + B (t))x is H-0 in [T). Thus, T(t,s) and T(s,t)
2 t

are one-to-one in 1-,r.The perturbed system has exponential di-

chotornies in and [T,+-) by Lemma 4.3, and in R andR

*by Lemmas 3.2 and 3.3. If k =0, we can use mollifiers to find

* B (t) E C (R,21,1, with compact support in (-T-1,7+1) so that L(t)
1

L (t) + B1 (t E C [-!,'-~r -L-jI) . Then A (t) = B (t) + B2 (t) is the

desired perturbation where Bt) is constructed from L(t) as above.
2
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95. Bifurcation functions.

In this section, we obtain bifurcation functions whose zeros will

* .be in one-to--one correspondence to heteroclinic orbits r of (1.2).

These functions will also be used to characterize the transversality

or degree of nontransversality of r.

The linear variational equation around r {q is
tEIR t

(51 (t) D f'(q )xt L (t ~ t dn(t,e)x~t+e)
t t q "t -

with the formal adjoint equation being

(5.2) Y(s) + {y(a)n(ais-z)da constant, s < t-r

Since qt c 'i) as t -+-,qt +wP as t-*+

with asymptotic phase, we may assume that y1  UtE t p 2 = 
1 t p2,

*where p (t) , p (t) are periodic solutions of (1.1) and qt p l't 0

a s t q* p 0 as t - .Thus,

IID~ f'(q) - D f'(p lt )11 0 as t

(5.3)

HE) f (c1) D Df(p2 ,t )II -0 as t -

We have already remarked in Section 2 that x() L (t)x t and (t)
p1

-L (t Wx thave exponential trichotomies on 1R. This fact, together
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with (5.3) and Lemma 4.3 imply that there is a T > 0 such that (5.1)

has an exponential trichotomy on (-w,ITI and IT,-) with exponents

i < 0 < 1  and < 0 < 2 respectively. Let y > 0 be a small

constant such that 0 < y < min4lal1...

For 0j small, let j p 1, y2 = t {P2 be the
tE I ,t 2' ,t

0 0hyperbolic periodic orbits of (1.2) with p1  p' P2 
= P2. As remarked

earlier, we wish to determine those solutions x (t) of (1.2) whose

orbits r are close to r and have a(01 t) V , (r Y 1. We also
2

want to do this by considering x as a small variation from the function

q that describes r. To do this, extreme care must be exercised in

order to have x as a small perturbation of q uniformly in t.

Several time scalings are involved and that is the reason for so much

of the following cumbersome notation.

+
Let B: R I + be a C -function with (t) 0 for t < -1,

°(t) 1 for t > 1. Let C2 (t) be a C -function such that 2 (t) 0

for t < r+l, C2(t) = 1 for t > r+2 and let l(t) = C (-t). If W.(i)
22j

is the period of p. (t) and w.(11)/w.(0) = I+ .(u), j 1,2, and

a IR, Ui are small, define

t = (.t,) = 8(t) a 2(i0) + (t) )

(5.4) w(t) = w(a, 1) (t) = l(t) Ip ((l+a)t)-Pl(t) I

+ 2t) p2((l+6)t+ L) - P2 (t)]

.......................~ .. .~... .... " .



I'." . : k :k: ": - "- " :T ':.. . . .-.. . . . . . . . . ..-. .-.-.-.. ,. .. . ......

-25-

Since

(5.5) p(l+i(Iaj1)t) -Pi(t) O(blh as 2 - 0

it follows that

(5.6) W,(t) W(ai) (t) 0ca + V as (Cij) -(0,0).

We need one other observation. For -r 0 < 0, consider the

equation for t,

(l+8(t+ ,U)) + t( (t+,I) - (t,))

By the Implicit Function Theorem, there is a solution E = r(&,tj)

0 + Oii) as i o 0. In particular, 6 =(1+61)) for t < -1,

-l n
-(I+B2( for t > 1. For any function x: 3 R Fn, we define

.-x from F to C([-r,0,]Rn )  by the relation x (6) X(t+ (4,t)

-r< & .

With the above notation, let us make the transformation x((l+B)t)

= q(t) + w(0 j,)(t) + z(t). The equation for z is

(5.7) F(z)(t) N(z,), ,t) "-t

where

-'1 - . - -e ,_ . .".*- -..-.. . . . . .
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F(Z) (t) = z(t) - L q(t)Z t

N(z, ,a,t) =NM(z,i,a,t) I F( M

(5.8)

M (Z r , ( It) = l '+ -B ) If (qt  ~ t + t  "] ''2

t ,S+-t, +gqt,+tP+ ,'.

- f(qt) - Lq(t)Wt - Lq(t)zt

t q q.

Any solution x (t) of (1.2) with a-limit set y and L.-limit

set Y2 must satisfy (5.7), (5.8). If 0 < y < min{ lla21,81 2

where a < 0 <  1' al < 0 < S2  are respectively the exponents for the

trichotomy of (5.1) on (--,-T] [T,-), then it follows that,probably after

a time shift in x (t), z (t)=x ((l+S)t)-q(t)-w(a,v)(t) must approach zero as

St- like eYt and must approach zero as t- like eYt. Therefore,it is

sufficient to consider only the solutions of (5.7), (5.8) in C (y,-y).

1 0
The map F: C (Y,-Y) -* C (y,-Y) is Fredholm by Lemma 4.6. To

estimate N(zyj,a,') as a map from C (Y,-,Y) to C(,-y), we need

the following observation.

For I t T sufficiently large, one can use the definition (5.4) and

show that

(5.9) F =Wxt) (1+)[f(pt,+Wt,&B + g(p tB+ t, 1 ) - f(P - Lq (t)- t

where a= 2 'p =p 2  if t is large and positive and ,P= p1

if t is large and negative.

.. ..-- °. . . .. . . . .. ,•-, .- -.. . . . . . ... ....... .... . .. ... .-.. .- _
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Using (5.8), (5.9), (5.6), (5.5) and the fact that z zt =

O(I ), one can show that .

N cz, ,, )0 oc10 + ,! + --I
C (),-Y) C (y,-I

as (1 Di,z) (0,0,0).

Let E be a projection from C (y,-y) onto A/(F) and E2:et

a projection from C 0(y,-y) onto RkF). Then (5.7) is equivalent to

(5.10) F(z) = E N(z,!,a,,)
2

(5.11) 0 (I-E )N(z,J,*)
2

If K: M(E 2) (I-E I ) is a right inverse of F, then K is

bounded since F is Fredholm. If {y , i = 1,2,... ,d} is a basis for
d id

Af(F) and z z* + i=1 ki' k = (ki .... kd) E CR z* E (I-EI

then (5.10) is equivalent to

d
(5.12) */= 5E 2N(Z* + Y

2=1

Using the contraction mapping principle, one can show there are

constants > > 0, u > 0, k > 0 such that (5.12) has a unique solution

12* = Z*(ak,,) E C (y,-y) for j a < Q, j < k, J < )J, z*(0,0,0) = 0.

kBy induction, one can actually show that z*(a,k,)j) EC (y,-y). If wt-

d x C -i C a"consider z* as a map from F3x × X into C(Y,-Y) and use an,-..'

_~

. . . . . . . . . .. ." ' _ . .... ... " " " " " .. . " " " ". ' ", • " - . --
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argument similar to the one for the proof of Lemma 2.2, chapter 10 of .

13 ] , then one can show that z*: R x P ^ X cO(y,--.) is Ck

Let T ,,.. I be a basis for the bounded solutions of

the formal adjoint equation (5.2). By Lenma 4.6, equation (5.10), (5.11) ,.

are equivalent to

(5.13) GJ( ,k,)df ?J (t)N(z*(a,kv) (t)+ d kyi =,at)dt =0,

j = 1,... ,d*.
jj

The functions Gj are called the bifurcation functions and the perturbed

equation has a heteroclinic solution in a neighborhood of r U a(r) U ()r)

if and only if GJ(A,k,,.) = 0, j = 1,... ,d* for some l < k <

and I < . The heteroclinic solution is, up to a phase shift,

d
(5.14) x (1+6)t) = q(t + w(cU)(t) + z*(a,k, )(t) + kiY (t).i=l 2"

Further discussion of the bifurcation function needs the following

lemma in which a(r) and U(') are hyperbolic periodic orbits or

equilibria.

Lemma 5.1. The formal adjoint equation (5.2) has a bounded solution

1 C ('Y,-) U C (-Y,-Y) U C (Y,Y) if and only if

(H) both a(r) and w(I) are hyperbolic periodic

orbits and q is the only bounded solution of

(5.1) not in C 1(*,-Y)

%,
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In all the other cases, bounded solutions of the formal adjoint equation

(5.2) are in C (y,,-y).

Proof. It is obvious that all the bounded solutions ip of (5.2) are

in C (y,-y) if a (r) and Lo ) are equilibria.

Suppose that ar) is an equilibrium and w(r) is a periodic

orbit. If F(a,R) = F restricted to CI(c, ), then ind F(-y,y) =

ind F(Y,-Y) +1, and dim_/"(-y,y) = dimAYF(y,-y) + 1. Therefore,

codim _F(-), Y) = codim -QF(Y,-Y). This shows that all the bounded

solutions of (5.2) are in C (y,-Y). Similarly, we can prove that all

1the bounded solutions of (5.3) are in C (Y,-Y) if U(F) is a periodic

orbit and (7) an equilibrium.

There are two cases when c(r) and w(F) are both periodic orbits.

Case I.

There are two linearly independent bounded solutions of (5.1), one

is q(t), another one approaches zero a t -- , and approaches g(t)

as t +c, exponentially. In this case, indF(-y,y) indF( y,-y) + 2,

and dim /AF(-Y, Y) = din'A'F(Y,-Y) + 2. Thus, all the bounded solutions

of (5.2) are in C (y,-y).

Case II.

Suppose (H) is satisfied; that is, there is only one bounded solution

of (5.1), q(t), up to the linear combination of solutions in C (y,-Y).

In this case, indF(-y,Y) = indF(Y,-y) + 2, and dim-4.F(-y,y) = dimAF(y,-y)+l.

Thus, codim .F(-Y,Y) = codim RF(Y,-Y) - 1. This shows that there is a

bounded solution i1 of (5.2), i CI(Y,-Y). By canparing F(y,-y)

with F(y,y) and also F(y,-',) with F(-y,-y), one shows that ' £ C (-y,-y)
wit
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and J F C (y,ly). This completes the proof of the lemma.

To study the bifurcation functions GJ Lt,k,-p1 in (5.13) in more

detail, we need the bilinear form associated with (5.1), (5.2). For

any i satisfying (5.2), E C([-r,0],,n), let

t (t+r

C t,*) = (t0)(O) + do 6  (a)n(a,+t-a)da] (0)-r t

t
where . (S) = \L(.t+s), 0 < s < r.

If the ib in C5.13) belong to C (y,-y) and w is defined in

(5.4), then

jt= 0. -21
J(t)F (w) (t) dt = (0.t- .. .

= (~ ,t) tj

Therefore, with the exception of Case (H) of Lemma 5,1, we may replace

N in (5,13) by M defined in (5.8); that is, drop the term F(c.) in

N.

Lemma 5.2. Assume (H) of Lemma 5.1 and let (l t) be the bounded

solution of (5.2) not in C1 (Y,-7) U C (-Y,-) U Cb(Y,). Then.
b b b ~ Te

G l(0,0,0)/ (' # 0.

Remark 5.3. In case (H) of Lemma 5.1, Lemma 5.2 says that we can

determine the variation of the transition time from a cross section of

c(r) to another one of w(r). In the case of ordinary differential equa-

u
tions, it is not hard to construct an example with dim or)) =2 and

boc

dim Wo (a(r)) = 1, and there are a continuum of heteroclinic orbits from

Wu ((7)) hittinc a cross section of w(f) at a continuum of transition
loc

-.I.
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times. Thus, the variation of transition time a cannot always be

determined.

Proof of Lemma 5.2. Since z* = 0, w 0 for U = 0, V = 0, k = n, it

follows from (5.8) that ;M(z,,,')ai- z 0 for 1.1 0, a = 0, k = 0.

Therefore, (5.13) implies that 9GI(0,0,0)/Da =

1 (t)F( .(0,O)/L) (t)dt = (4l, It is easy
-J t

to see that 3(0,0)/a = 02 (t)p (t), and so (41 ',(OW(0,0)/ a) t) - 0
that

as t - - . For solutions 0(t) of (5.2) and E E C[-r,0], the bilinear

form (. ,t) defines an element ;*(t) E C*[-r,0], l t, )t >.

4*(t) is a trajectory of T*(s,t) which has exponential trichotories

1
in (-.,-r] and [7,+-). The hypothesis on (t) implies that ;*(T)

E RP*(.) D P*() with P*( )¢*(r) ' 0. We also know that x(t) -
u c c

D f'(p )Xt 0 has exponential trichotomy with projections Put PC 2,t s

and P . Lenr.a 4.3 implies that P (t) - P (t) exponentially as t .i
c c c

Therefore, P*(t) . p*(t) exponentially as t - +. Thus y*(t) =
C C

= T*(t,T)P*();'*(T) + T*(t,T)P*(T)*(T) T*(t,T)P ()*(T) .
c u c

Therefore, P*(t)-*(t) T*(t,T)P*(T)*(T), as t - +'. Now, clearly,
c c

lir infl*(t)c*(t)I >0. For large t, (t) = 1. Therefore, (
t-* c
('2)2)t~t s 2> Since 2,t s a basis

= <p*t)4*t),.> p i

for the simple multiplier one of the linear variational equations about

P the latter quantity is nonzero. This proves the lemma.

We now state the main result of this section:

Theorem 5.4. Let F = 'J be a heteroclinic orbit with o()'

t ltI and w(r) = tu {p2,t hyperbolic periodic orbits, Then

there is a heteroclinic orbit U {x"} in a neighborhood of
_____ ____ ___-tEIR t

r L c(r) U .(ir), with x as in (5.14), if and only if G3(-,k,,) 0.

. .ii--
- A .4 -. ~ j . .' - ..
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= 1,...,d*, k E Rd, I < a, Ikl < k, Jp! < i and G is given in (5.33).

If eJ E Cl(N,-y), then N in (5.13) can be replaced by M in (5.8).
,1 1I :-..-

The only situation in which there is a C (y,-y) is when (H)

of Lemma 5.1 is satisfied. In this case, ;G (o,o,o)/Dcx 9 0. Moreover,

d-d* id 7- 1. if GD( k,; 0, j 1,.,.,d*, then the hetero-
0io 0 0 0

clinic orbit r defined by a , , V in (5.14) is transverse if

and only if the rank of the following matrix is d*,

(5. 15) { '( kD ( , .....5d*.
D.. D

Proof. Only the transversality needs a proof. This will be postponed

until the end of the next section since it involves special types of

perturbations of the vector field.

We end this section with some formula for the derivatives of Gj .

It is easy to show 3GD(C,O,0)/3k. = 0. Also 3G (O,O,0)/Da = 0 except

when (H) of Lemma 5.1 is satisfied. It is not hard to show that

2l M

D2G (O'O'kO)/k -k = (t)f"(qt) y y ) (t)dtzt°t ,

3J= G (t)f"(qt(22ti (t)dt.aaak i  _)(2

However, the formula for GG/4f 2GJ/ k and 2GJ/D-,3a are difficult

to compute for general perturbations g(4,p). We therefore consider only

specific perturbations g( ,i) such that g(p ,,) = 0, i = 1.2. We

then have
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(S.D6 (GC,O,0)/3,, gt (~q 0) / j' (t) dt
t

2j
(517 tt

+2 i~ .I~t~d*

t t

(518 ~ 2GOO,)3c = ~(t) f (q~ (9z*/ 39Jtg

where z*/4i Dz= ,,) j
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§6. Perturbations to heteroclinic orbits.

k+lFor f E X k > 1, in (.i), we want to show first that there

exists a g E Xk , arbitrarily small such that (1.2) has F as a

heteroclinic orbit in general position. Assume that (5.1) has exponen-

tial trichotomies in (--,-t 0  and [tot+-). Without loss of generality,

we assume that the orbit segment {x = qt, t E [-to-c,t0+c)} has no

intersection with (T') and AF), and t0 > (k+2)r/2.

Fi -st, we need a lemma for the perturbation of linear equations.

Suppose that the linear functional differential equation (4.1),

kL(.) E C (R,21), k > 0, has shifted exponential dichotomies in J =

k+2
(--,t 0 ]  and J2 = [-t0'+-),where to > 2 r is a constant, with

projection P-(t), P (t) ((P (t),Ps(t)) and exponents a < 8
u s u s1 1

(a, <8) for t E J (t EJ). Let y and y be two real
2 2 1 2 a

k
-C ~1'9 be defined as in §4, FL (h) Ct) = dh(t)/dt - L(t)h.

Assume that dim{_ P (0) n _qP s(0)} = b, dim.qP (0) = b+c, and
Ss u

dim 92(0) =c+c, where b 5 0, e > 0, c > 0 are integers. If T(t,s)

is the solution operator of (4.1), then, for any y0 E 
P (0), Yt =

T(t,0)y is defined for all t E R. Also, it is clear that y E.jPu(t)
'0 t u

for t E J We shall use {mi . '] to denote the linear space spanned

by :it" .. PM

Lemma 6.1. Assume that all the above are satisfied. Let a be an integer,

1 a a+l b
0 < a < min(b,e). Take any basis {y0,...y 0 y0  ... y in P (0)

n R0 Ps(0) and let yi: 1 R :In be the solution of (4.1) through at

zero, yt T(t,0)y0"

".. ."- -;- f; '" ' "" -5 ; •- •- ° Ilml " ": i -- Z' ~ - ; ' ': • ' - '
. .

-
..

i
. .". ." " -" - . .. . . ' . ' : ' .
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Consider the perturbed equation

(6.1) x(t) = L(t)x + CB(t)x
t t

and the operator F ck+l(yy 2) ck(Yy 2) where £ is a realan te peatr L+ B:2 1 2 .

parameter. Then there exists an E > 0 and a B(.) E C k(R,) with

(- a+l'. . bcompact support in (-t0 ,t0 ) and B(t)4 = 0 if E C [yt I,... 'Y.
t.

F-0
* such that, for !E1 < 0'(F+) = {0} if a = b, '(FL ) .

________ -L-i-B L+EBya~l b]
.... y if a < b.

Proof. By Lemma 4.5, F is Fredholm with Index =(b+c) - (c+e) = b-e.
L

Since dim (F) = b, we have codim .4'(F ) = e. Let be tl;e st
L L

of functions from R to IR corresponding to the linear space of

the solutions of the formal adjoint equation of (4.1) defined in F,

-t -C1t
.E 4 if (t) < Ke t > 0 y(t) < Ke t 0 0. Then .

is of dimension e and Y 1 [ where ,l,.,e are linearly

independent.

b+l b+c
Choose y ,I ... Y0  } C P(0) such that {y3), j 1,... ,b+c,

U"

form a basis in RP (0). Define yJ as the solution of (4.1) through
u

YO y 0  
= T(t,0)y', t E R, j = 1,...,b+c. Obviously, {y }, j 1,... ,b+c,

is a basis in WP u(t), t E Jl" Let (t) = [yl_ .... yt and

= {z: F - C[-r,0]: z a/=b.y ' b E FR, j 1-,...,a}. We now define

B(t): C[-r,0] - Rn, t E (-t ,t0 ) as
0 0

al b+c -"-

(i) B(t)z t = 0 if zt y a+ l '... y ]. P (t) I
t t 5

(ii) B(t)y 1- (.iCt)), i =1,2 a, where denotes the,

transpose, and extend it linearly to t(t).

I liil

-:[.-:.-<
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k
It is not hard to show that B(t) is C for t E (-t0,t0-(k+2)r).

We proceed as follows. Let { 1,i=1,... ,b+c, be an invariant basis
t

for P (t), t E (-t 1, i.e., T(~) it <s<t<t Asm

tha <' y3>~)~ 1- < s , t < 0  Assumehe
-ij i

a
(6.2) Bts= (i(t) <~ ~>

From the relation of the true adjoint and formal adjoint operators, we

know that there exist functions ( t), t < t -r, i = l,...,b+c, such

that < t,r> = for t < t 0-r, where (t), i 1,...,b-c, .-

are solutions of the formal adjoint of (4.1) and

(i~ ,) ~,(t)ciO) + Jo d6e[

-i k
From the comment after (4.2), ') are C functions for t E (--,t -(l+k)r).

0

Identifying with a function of bounded variation 14(t,-) B

mo -r 0) R we have

~(t,O) =0,

_- f-r .

k
After a few computations and exploiting the fact that l( -,.) E C (R, 0)

we see that 1(,)E __(~,t - (1+k) r) ,BO9. This implies that <1.

k k
is C ((--,t -(l+k)r),21). The C smoothness of i(t) follows from

0

(6.2).
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We observe that B(t) sends ( injectively into T. We also

observe that, if ( E T, 1', Q(t) 1 0 f or t E R, then 0
[T T-erJ

restricted to some interval [T-,T+r) E (-tort t-(k+2)r). Otherwise,

00

assertion I0 together with the exponential estimate for
-r~+rl

elements in TY imply that -(t) E 0 for all t E R.

Let B(t) = (t)B(t), where E~: R - R is C , (t) 1 on [tr,-+rl ,

FCt) has compact support in (-tort 0-(k+l)r), and U(t) > 0 for t E R.

If we extend B(t) E0 outside (-tort 0 ) then B(-) EC CR 211. it is

easy to see that, for any z E 4), z 0, t E FR, there exists at least

*one; E Y such that

(6.3) < t t)z>3 0.

* For example, we can choose 0(t) = (t)z
t

We have to show that B(t) is the desired perturbation. Solutions

of (6.1) are denoted by y(t,c) with y(t,c) = y(t,0) for t < t. if

u(t) d (~yt,dirc then u~t) satisfies the following system

(6.4) u~)=L(t)u + B(t)y
t yt

u(t) =0, t < -to

k+1
If y E ~,y~ 0, t E FR, we infer that u C (Y ,Y) in (6.4).t 12

For otherwise, B(t)y ER(F ) which contradicts (6.3). Moreover, ut L

C k' ,). For otherwise, (6.4) implies that u E C (l "V' ).
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Let u (t) be the solution of (6.4) corresponding to the forcing

- 1 a b+l b+c'term B(t)y t. We show that {U , ... ,ty '.,' t of are

linearly independent and [u1  a b '''bYt I Ps(t) {0,

t > t For this, suppose that there exist real constants {aj}, j 1 1, I
0* a b+c.b such that u a = U + a ytE _ Ps(t), t > to  It is

j=l jb+l

easy to see that u(t) is a solution of (6.4) with the initial condition
b+c

u(t) = i.(t) for t < -to , corresponding to the unique forcing
j b+l -

B(t)yt =B(t) a y yE D. But ut EC(y 1 ,y2), since uE P+(t), t>t 0=1 sj t
and uE R (t ) , t < -tO . This would be a contradiction to (6.3) unless

t U 0*

C = 0, j = 1,...,a, b+l,...,b+c.
1Ia b+l bAc

We now prove that {y ,(*,), .... yt(.,c),yt (.,E) ... yt (',E)} are
t t t t

1 a b+1 b+c
linearly independent and [yl (*,),...,y ( bl),y (bc( .... y (.,))

t . .t t t

n mP+(t) = {0} for t > to, 0 < EJ < E0 1 c0  is some small constant.

It suffices to show that [ylt (-,E) -.yt (.
,
0)y....a (., ,ybl. .

bt 0 t t
( E) n mp+ = {0} since yt (,'0 ) E.-PA(t a.

0 1 a b+1 0  b+c i +
That is, Eul ,+o(c),Y o)]n}

00 0 1 a
Dividina by c in the first a vectors, we obtain [u +o(l),...,u +o(l),b+ b+c 0 to0t
y +o(l),...,Y +o(l)] n P(t0) {0). Since the last equality is
to yt {o}0
valid if o(l) 's are dropped, it is valid if c is sufficiently small.

Finally, the proof of the lemma is completed by observing that
+

MPu(-t ) and R P (t ) are independent of c. .. 1'
u 0 sO0

Define 5N: C[-r,O - RnN by 6N = (4(0)

0 (w,.. ,w I ) w. E Rn , j 0,...,N-I. For N sufficiently large,

6 embeds the periodic orbits Y. U pt j =1,2, and theN.. . .E.. .t..

. . . . . . . . . .. . . . . . . . . . . . .
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n N
segment of the heteroclinic orbit q t E [-t -E,t +F) into R

t0 0

with disjoint images in RnN provided that yn {qt, t E [-t0-c,

t +F) is empty, j = 1,2.
0

The proof of the above is similar to a lemma in [7) and shall be

omitted.

k+l k
Lemma 6.2. For f E Xk , k > 1 there is an arbitrarily small g(') ,

such that g = 0 on r u a(P) U w(F) and x(t) = f(q)x + g'(q)X

has exponential trichotornies in (--,+t 0  and [-t0,+M).

Proof. We first construct a linear perturbation to (5.1). There exists

k
BI(.) E c (R,1) with compact support in J = (-t -C,to+c) and arbitrarily

10 0

small such that L(t) + B1 (t) satisfies the H-O property on [-t0 ,t0]. This

is seen from Lemma 4.1, followed by a multiplication of a Co cut-off func-

tion. We claim that an additional perturbation 6Bl(t) can be made such

that B1 + LBl(t) = (t), L(t) + B2(t) satisfies the H-0 property on1.2 2 2

[-t0 ,t0] and B2 (t)q = 0 for all t E R. To see this, consider the map
kck n-.'i

Bl(t) k i(t), C (J,%) C (J,Rn ) given by k(t) = Bl(t) . This map has

compact support in J. Let N be a large number such that 6 embeds
nNN

{q ,ttEJi into Rn . We can find a finite set of integers fk1 ,.. . ,k  .

0 < k < N-1 and open intervals {Ii,...,I} which covers J and

(t-kir/N) > c. > 0 in I., Also, in I., we can solve the equation

w, =q(t-kir/N) for t = t(wk ). There is a Co partition of unity {i"
l1 in

on J subordinate to {Ii}, i = 1,... , and (t) = 1 for t E J.

Let AB (t): C[-r,O Rn be defined as .

m
A IB(t)€' = - & i(t)<q(t-kir/N) , (-kir/N)>R(t)/ lq(t-kir/N) I2.

iim
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"

Then AB () E C (J,%; and depends continuously on £(.) E Ck(J,B).

Moreover, AB1 (t)qt = -i(t); hence, (BI(t)+ABl(t))q t = 0 for all

t E R.

The support of B 2(t) = B (t) + B l(t) has some overlap with

(-,-t0I and [t?+.) However, from Lemma 4.3, x(t) = (L(t)+B (t))x
'0 0'2 t

has exponential trichotomies in (--,-t 0] and [t0,+-) if B2 (t) is

small. Moreover, by Lemma 4.1, $.2, 2.2 and 2.3, the domain of the

exponential trichotomies is extended to (-o,t and [-to,+W)
0• .," ,

The proof of Lemma 6.2 is fulfilled if we prove the following lemma.

Lemma 6.3. If B(.) E C (B,21) with support in J = (-t 0- Et0+) and
,3. 

o .t- -.)

B(t'q = 0, and the orbit segment {q , t E [-t -g t +r]}, has no inter-
tt 0 '0

section with a(r) and w(r), then one can find g(.) E x such that

g = 0 on F U U 1 U -2 and g'(qt) = B(t), t E R.

Proof. Let U i =1, ,m, be an open covering of {6Nqt: t E J) in

nN
RnN with U. n (a(r) U w(r)) = 0. Let U N {6q: t E RI = {6q: tEii}.

0 i N t N t

Let B(t)¢ = dnB(t,6)¢(6). For 6 E Ui., we define

g. (4) dn1B tC7 k. N I (,64) -qt7 k.6 + 6)).
-r

where t = t(w ) is the solution for w q(t-kir/N). Direct
1k1 k 1

computations show that

i = J-rdn (t,)- o dnB (t,)q(t+e) d k~6 N.-,. ..r -r k ." "

The last term vanishes since B(t)qt 0. Let i(w), i = 1....m be

a partition of unity in RnN subordinate to {Ui } such that 1&i(w)=l

v... . . ..
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I.Nfor w being in a neighborhood of f6 t J) in RN Then

m
q() = - Ei( N)gi(f) is the desired perutrbation.

1 N n.

k+1
Theorem 6.4. Let I max{-indO}, f E x k > 1. If r is a

heteroclinic orbit of (1.1) and is in general position, then f E

k+1 k+l k+l k-U
M (I), a C submanifold of x with codim M (I) = I. The

equation x(t) = f(xt) has a heteroclinic orbit in a neighborhood of

k+l
r u c(r) U w(F) and f is close to f in X if and only if f E

k+1
M (I). If r is not in general position, there exists a perturbation

k
g E > , arbitrarily small and r is a heteroclinic orbit in general

position of the perturbed equation x(t) = f(x t ) + g(xt).t t

Moreover, if indr > 0 and r is in general position (transverse)

and H is the set of heteroclinic orbits of (1.1) near r, then H n

WUc(F)) is an (indr)-submanifold of W1  (c(r)). If, in addition,W c loc

the flow near F is one-to-one, then H is an immersed (indr)-submanifold.

Proof. We first observe that being in general position is rough for

the perturbations that do not destroy the heteroclinic orbit; that is,

k+l
if f is close to f in X and with a heteroclinic orbit P close

to F which is in general position, then f is in general position.

Nothing has to be proved if r is transverse. Suppose F is in

k+lgeneral position and ind r <0, I > 0. We want to show that f E M (I).

In this case q(t) is the only bounded solution of (5.2) not in C(y,-y)

and there are no solutions of (5.1) in C(y,-y). Thus, the bifurcation

functions G (a,O) in (5.13) will depend only on a,1.. By Lemma (5.1)

there exists a bounded solution of (5.2), denoted by ul(t), not in Cl(y,-y)

and there are d*-l bounded independent solutions ;j (t), j = 2,... d* in
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C] (' ,-y), which together with (t) , form a basis of the bounded sclutions

d*

of (5.2). From Lemma 5.2, G (0,0)/3o, 4 0. Let g(.) = EZ gt(f). From

(5.16), 3G /;C (t)g (qt)dt. Using the technique in [8] , we can find .6

k - nN n
C functions g[: R - R such that, if g (4) = H then

,J (tg£ qt £= 1 d* 'i ii

( )d is nonsingular. Moreover, ) = 0

1,2. Details are omitted. We solve a = a(E ) from GI(z, ) = 0.

For j = 2,... ,d*, ;Gj(O,0)/3c = 0. Therefore,

dG (0,0) = G (o,o) + ;GJ(0,O) dc = (0'0)Dg (q )dt, j = 2,...,d*

and the matrix ' - has rank d*-l = I. This shows, d £ £=i .. ...d* -

k+lthat f E Mk  CI).

Now suppose r is not in general position. By Lemma 6.2, we

k *k
assume that f E X f (q t c (R,II), and (5.2) has exponential tri-

chotomies in (--,t O ] and [t,,+o). We use Lemma 6.1 to prove that
0 0

there is a perturbation £g(4) to make r a heteroclinic orbit in

general position. For this, observe that P (t) P (t) + P (t),
u u c

P-(t) =P (t), t E (-,t] and P +(t) =P +(t) P+(t) =P+(t) + P+(t)
s s 0 u U s c s

define shifted exponential trichotomies in (--,t O  and [-to,+oo).

In the notation of Lemma 6.1, nothing is to be proved if WP-(O) n
u

~_P+(O) is of dimensicn b = 1; that is, spanned by q(t). If not,
s b 1 b-1 b,

let b > 1 and yo = q0 and {yo .... Yo 'y01 be a basis in MP-(0)

r) RP (0). It is clear that if e = 0 r is transverse. Thus, we
5

assume e > 0. Let a = min(b-l,e), and cB(t) be the perturbation

determined by Lemma 6.1. Since eB(t)qt 0, by Lemma 6.3, we can find

ttkg C such that g = 0 on P U cx(F) U w(f) and g' (qt) = cB(t). -[-

- .. I ~ . I- ~ - ~ . --g -
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For the perturbed equation, r is clearly in general positiol.. ThcrE ar'.

two cases. If b-i > e, then ind r > 0, and r is transverse with

respect to the perturbed equation. If b-i < e, then the perturbed equation

has q(t) as the unique bounded solution for its linear variational

equation. Thus, 7 is in general position after perturbation.

The last part of the theorem follows fron (5.13) and (5.14). For,

din that case, d* = 1, d = indF, one can choose Ikl < k, k E R in an

arbitrarymanner and obtain a from (5.13) since 9G/8a 0 0. This com-

pletes the proof of the theorem.

The bifurcation functions G and results similar to Theorem

p 6.4 are easier to obtain in the other three cases in which r is a

heteroclinic orbit of (1.1) and a(F) and w(F) are hyperbolic:

1) a(.) and u(F) are equilibria.

2) c(F) is an equilibrium and w(F) is a periodic orbit.

3) a(F) is a periodic orbit and w(F) is an equilibrium.

In case 1), exponential dichotomy is employed and no frequency ,

and phase variation a are needed. However, since q(t) E A'F(y,-y),

we let x(t) = q(t) + z(t), with z(t) E [y,.... y , where

{q,y ... y d-l is a basis of A'F(y,-y) and JEAVF(y,-y) = ck+l (Y,-Y)

d-1
Then we assume z = z* + kiy with z* E .

In case 2) and 3), we need 6(t,v) for only one side and by a

proper phase shift we assume that x ((l+$)t) - p.(t) as t -- += or

- for i = 1,2. *"-"

The following is true for a(r) and w(F) being hyperbolic periodic

orbits or equilibria, with general position being defined in an obvious

way.

". . .'- -.-- -. .. . -
" > '- - '" """ --.. .---. '.. . . . . .-.. . . . . . . ..'. . ..-"-.-. . . . ..-.,--9 '; ' .< ' _'.- _2 :' . .; :J<.€'<;Ciz'. ''_ '. '_ , ' i i,-.' .'
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ThoeI.5ne d r =dim Wu (-xCr)) -dim W u L (r)) + dim *(7) -2Thoe .. Ltlc loc

Then the results of Theorem 6.4 are valid with ca(r) and w(I') being

hyperbolic periodic orbits or equilibria..

Completion of proof of Theorem 5.4. We owe the readers a proof of trans-
0iversality in Theorem 5.4. If the heteroclinic orbit rp is transverse,

0
then, for a small perturbation g(c4) to g(t,11 ) there is a hetero-

clinic orbit rg which is within O(0g1) of rk and

the phase variation aig) is also within O(!gl) to oo. Conversely,

V0 110 110
if we denote r U x>0 ,t and if r is not transverse, we can fin~d

a family of perturbations eg. ~ to g(4,110 ) such that trajectories

L 1
starting from Wio (cr )) are moved to a direction transverse to

Tw (ct(r ) + Tw (w(r )) Thus, we either eliminate the intersection of

WU (CL(pL )) and W~q (w(r'~) or move it to a distance > O(Ic-gl). To show

the existence of such gwe use the technique in proving Theorem 6.4 to

construct g E X such that 9, 0 in some neighborhoods of cUP)

10
and w(r) , g (x') F+(. 110 (-YF) Let t0 > 0 be sufficiently --

large and consider the solution X(t,E) Of

X(t) =f(x ) + g(x ,1100) + E9g (x

10
x(t) =X (t), t <-to

*It is not difficult to show that (;x(t,01/3c) i? 9P (t )+ (T(toMsO 0

-t )P(-t ))where P and P are projections associated with the
0 u 0 s u

shifted exponential dichotomies in (--,t 0 and [to#+-) for the linearized

0
I.equation around .Therefore, cg1 is the desired perturbation.
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On the other hand, we consider the extended perturbations g1(, I~

k+ 1
- gz,.)+ g(;), with the parameters Cv,g) E x X .if the matrix

in (5.15) has rank d*, then, for small g, there exist aO + 6a, k0 +6k

such that G C 5,kC ,,,_ = 0, j = 1,...,d*, and 63, 6k = 0('91.

Therefore, there is a new heteroclinic orbit F', O(g91) near r and

with a phase variation cz(g), O(gJ1) near a0. conversely, if the matrix:

jo0
in (5.15) has rank < d*, without loss of generality, let 9G (c 0, 0 ,1v0)/ k.

30
-0, 9G (ik 0 )/ rx = 0, i = 1, ... ,d. For the extended family of per-

turbations, it is clear that 3G 0(cio,k0,1woQ)/3g ? 0 from the proof of

Theorem 6.4. Thus, there are small g such that either we cannot find

jo0
ai, k near cia, k0  such that G (c,k,Iu0,g) =0, or they are moved to a

distance > C(19-!) to 0, k0 . The heteroclinic orbit rgis moved to

a distance >Odjj in the latter case if we can show that az/9ci,

z/ak. and 3x 10(t)/;t are linearly independent. It is obviously true

when c0 -- =O- k0  0, for then @z*/acz = 9z*/@k. 0, and aw/aci
d1

()and - )kiy ) = y (t), i 1 ,...,d. The linear independence

holds for a ,~0 kO being small.

We have two characterizations by which the pertrubation g will not

V' 0 0

*By comparison we see that the transversality of r is equivalent to

* the rank of the matrix in (5.15) being d*.
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